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1. INTRODUCTION 

Classical tungsten heavy alloys (WHAs) are usually fabricated by liquid-phase sintering (LPS) of 

W-Ni-Fe or W-Ni-Cu elemental powder blends. These nickel-based heavy alloys have a two-phase 

composite structure of dispersed, nearly pure, tungsten grains embedded in a ternary alloy matrix. In 

recent years, extensive research has been performed with these heavy alloys to increase ballistic 

performance in kinetic energy (KE) projectile applications (Magness 1992; Baker and Dunn 1992; Noh 

et al. 1992; Magness 1994; Weerasooriya, Moy, and Dowding 1994; Guha et al. 1994). Although 

significant improvement has been made, the inability to form adiabatic shear localization bands in the 

WHAs during ballistic impact still limits the armor penetration depth and results in inferior performance, 

when compared to depleted uranium (DU) penetrators (Magness 1992). This barrier has led to the 

development of novel WHAs. The main approach has been the development of new matrix materials with 

their thermomechanical properties similar to those of DU (Baker and Dunn 1992; Magness 1994). It has 

been well established (Magness 1992,1994; Magness and Farrand 1990) that the self-sharpening behavior 

of DU penetrators during ballistic impact is a competition between localized deformation hardening and 

localized thermal softening under extremely high hydrostatic pressure (-5-6 GPa). In order to induce 

thermomechanical instability prior to plastic deformation, an ideal matrix material would have low-heat 

capacity, low-thermal conductivity, low work-hardening rate, and low strain-rate hardening (Baker and 

Dunn 1992; Magness 1994). Because of the comparable thermal properties of hafnium as compared to 

those of DU, hafnium-based WHAs have indicated a propensity for thermal softening. 

Magness (1995) has reported that W-Hf alloys have shown better ballistic performance than 

conventional WHAs in KE projectile applications. Recent work by Subhash, Pletka, and Ravichandran 

(1994) has indicated that polycrystalline hafnium has a high propensity for strain rate insensitive shear 

banding under uniaxial compressive loading. Although W-Hf alloys are shown to have potential for KE 

projectile applications, processing methods are limited due to the relatively high-liquidus (>2,500° C) 

temperature (Rudy 1969; Spencer et al. 1981) for tungsten-rich compositions. This physical limitation 

makes LPS of W-Hf alloys impractical, and formation of the HfW2 intermetallic is unavoidable. Subhash 

et al. (1994) have reported that hot-extruded, followed by multiple-swaged W-Hf alloys, have brittle 

fracture characteristics possibly due to the presence of HfW2. Ohriner, Sikka, and Kapoor (1994) have 

reported that W-Hf composites can be consolidated by hot extrusion. They also have reported HfW2 

formation at the 1,400° C preheat temperature. Edelman, Pletka, and Subhash (1994) have reported that 

a W-Hf-Ti composite has been processed by mechanical alloying followed by vacuum sintering. Full 
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density has not been achieved at temperatures up to 1,450° C. All of the aforementioned novel processing 

techniques, however, have relatively high processing costs. 

According to the Hf-Cu phase diagram (Spencer et al. 1981; Subramanian and Laughlin 1988), small 

additions of copper into the binary W-Hf system can substantially lower the LPS temperature. Since 

tungsten is insoluble in the liquid copper (Hansen and Anderko 1958), the W-Hf-Cu ternary system can 

be treated as a pseudo-binary alloy system. A constant tungsten content of 80 weight-percent was used 

in this study. This composition was consistent with the previous study by Magness (1995). He was able 

to observe that the 80W-20Hf (weight-percent) alloy resulted in improved ballistic performance as 

compared to conventional WHAs. Two near-eutectic, hafnium-rich Hf-Cu compositions are of particular 

interest in the present study. By inspection of the relevant binary-phase diagram, it was concluded that 

the formation of potentially harmful intermetallic phases could be avoided through proper processing. It 

was believed that the HfW2 phase could be avoided by holding the processing temperature below some 

critical point where the reaction kinetics were sluggish enough to inhibit its formation. Concurrently, it 

was also required that the temperature be above the liquidus temperature of the binary Hf-Cu eutectic 

composition. This would provide a temperature window in which to process the ternary alloy. The 

process concept also recognized the necessity of avoiding the formation of the CuHf2 intermetallic on 

cooling from the liquidus. Several cooling rates and media were investigated for the Hf-Cu binary to 

determine the optimum conditions. Binary 80W-20Hf (weight-percent) elemental powder blends were 

used to determine the threshold temperature for HfW2 formation, and uniaxially pressed 90Hf-10Cu 

(weight-percent) elemental powder blends were used to determine the effects of the cooling rate on the 

formation of CuHf2 from an LPS temperature of 1,310° C. 

2. EXPERIMENTAL PROCEDURE 

It has been well known that tungsten is insoluble in liquid copper in the binary W-Cu system (Hansen 

and Anderko 1958). Phase equilibria studies of ternary W-Cu-Al (Prevarskii and Kuzma 1983) and 

W-Cu-WSi2 (Efimov et al. 1984) also reported negligible mutual solubility of copper and tungsten. 

Therefore, it is reasonable to assume that mutual solubility of copper and tungsten should be negligible 

in the ternary W-Hf-Cu system. In the equilibrium W-Hf binary system, as shown in Figure 1(a), 

solubility of hafnium decreases from -9 weight-percent at -2,512° C to ~4 weight-percent at -1,400° C 

(Rudy 1969; Spencer et al. 1981). On the other hand, on the hafnium-rich side of the Hf-Cu binary 

system, a liquid phase begins to form at temperatures above 1,295° C (Spencer 1981; Subramanian and 

Laughlin 1988), as shown in Figure 1(b). 
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Figure 1. Equilibrium binary-phase diagram of the (a) Hf-W and (b) Hf-Cu systems 
(Spencer et al. [1981]). 



The eutectic hafnium composition in the hafnium-rich Hf-Cu binary system is -88.5 weight-percent 

(Subramanian and Laughlin 1988). Although the equilibrium-phase diagram predicts solubility of about 

-3 weight-percent hafnium at -1,300° C, the kinetics of reaction between tungsten and hafnium in the 

W-Hf-Cu systems are unknown. Initially, therefore, the ternary composition of 80W-20 (Hf-Cu) with a 

88.5Hf:11.5 Cu ratio in weight-percent was selected. The main concern was how to avoid formation of 

two intermetallic phases in the W-Hf-Cu ternary system—namely, HfW2 and CuHf2. 

For determination of the threshold temperature for HfW2 intermetallic formation, elemental powder 

blends of 80W-20Hf were prepared. Because of the potential pyrophoricity of hafnium elemental powders 

(-325 mesh), initial powder blends were prepared inside of a glove box filled with argon. Once tungsten 

and hafnium powders were placed in a container, subsequent mixing was done at ambient atmosphere. 

These powder blends were then placed on alumina crucibles and heated in a conventional tube furnace 

at temperatures ranging from 1,000° C to 1,500° C in increments of 100° C for 60 min. Additional 

exposure times of 240 and 480 min were investigated at 1,500° C. All experiments were done under ultra- 

high purity (grade 5) argon. All specimens were cooled to ambient temperature inside the furnace with 

a continuous flow of argon. Partially sintered powder blends were carefully ground and prepared for 

powder x-ray diffraction (XRD). Monochromated Cu Kal (k = 1.5406 A) radiation was utilized for 

qualitative HfW2 intermetallic phase analysis using W(l 10) planes and HfW2(311) planes. All XRD data 

were obtained using a step-scan technique with increments of 0.02° and a counting time of 2 s per step. 

Radiation was generated using a 45 kV and 40 mA power setting. 

Formation and stability of the CuHf2 phase was examined using 90Hf-10Cu elemental powder blends. 

These powder blends were uniaxially pressed at a pressure of 165 MPa (-24 ksi) using a cylindrical-steel 

die. Disk-shaped specimens (29 mm diameter x 6 mm thickness) were placed in alumina crucibles and 

heated in a conventional tube furnace at a temperature of 1,310° C under ultra-high purity argon 

atmosphere. Four different cooling rates were selected to determine the formation CuHf2 upon cooling 

from the liquidus temperature. To retain high-temperature phase(s) and microstructure, the specimen was 

water quenched (WQ). The equilibrium condition was simulated by furnace cooling (FC) the specimen 

with a continuous flow of argon. Two additional intermediate cooling rates were selected to examine the 

additional effects of phase formation. A specimen was cooled inside of the furnace with an increased 

argon flow rate of 10 times the rate used for sintering. This will be designated as the furnace fast-cooled 

condition (FCC). The last specimen was moved to an edge of the tube after the sintering and continuous 

flow of argon was applied by a high-speed nozzle blast This condition will be designated as a nozzle- 



quenched (NQ) condition. Specimens were sectioned using diamond waffering blades and mounted for 

optical and electron microscopy. CuHf2 intermetallic phase was analyzed qualitatively using the XRD 

technique with monochromated Cu Kal radiation on the polished cross sections. 

Based on the information obtained from the W-Hf and Hf-Cu binary systems, a processing window 

for W-Hf-Cu alloy was determined. Two near-eutectic compositions of the Hf-Cu binary system were 

utilized to lower the LPS temperature so that HfW2 intermetallic-phase formation would be avoided. The 

selected ternary compositions were 80W-17.7Hf-Cu and 80W-13.7Hf-Cu (weight-percent), and their 

approximate LPS temperatures were determined to be 1,310° C and 995° C, respectively. These LPS 

temperatures were determined by using the Hf-Cu phase diagrams (Spencer et al. 1981; Subramanian and 

Laughlin 1988) since W is insoluble in the liquid copper (Hansen and Anderko 1958) and reactions 

between tungsten and hafnium are expected to be marginal in these temperature regimes (Rudy 1969; 

Spencer et al. 1981). For the 80W-17.7Hf-Cu alloy, the LPS temperature of 1,310° C was adequate. For 

the 80W-13.7Hf-Cu alloy, however, the initial sintering temperature of 995° C was too low to provide 

enough liquid phase to promote full sintering. Additional sintering temperatures of 1,025° C and 1,100° C 

were applied. Initial sintering times of 30 min and cooling conditions of FC, FCC, NQ, and WQ were 

selected. For the 80W-17.7Hf-Cu alloy, additional sintering times of 5 and 60 min and liquid nitrogen- 

quenched (LNQ) conditions were applied. All specimens were sectioned using diamond waffering blades 

for subsequent XRD analysis and metallographic examination. 

3. RESULTS AND DISCUSSION 

According to the XRD analysis of heat-treated elemental powder blends of W-Hf, the HfW2 phase 

begins to form at ~1,400° C. This result is consistent with the observations by Subhash et al. (1994) and 

Ohriner, Sikka, and Kapoor (1994). Figure 2(a) shows results obtained in temperature ranges from 

1,000° C to 1,300° C with an exposure time of 60 min. The interplanar spacing of W(110) and 

HfW2(311) are 2.238 and 2.272 A, respectively (International Centre for Diffraction Data 1994). 

Corresponding diffraction angles, 29, are 40.24° and 39.64°, respectively. HfW2(311) peaks were not 

detected by XRD at 1,300° C and below. Figure 2(b) shows the results obtained at 1,400° C and 1,500° C 

with an exposure time of 60 min. Additional exposure times of 240 and 480 min were utilized to examine 

the kinetics of HfW2 phase formation. The threshold temperature for HfW2 phase formation was 

determined to be very close to 1,400° C. It should be pointed out that relative intensities shown in 

Figures 2(a) and 2(b) are magnified so that all the lines could be visible without overlapping. The amount 
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Figure 2. XRD patterns of the 80W-20Hf weight-percent powder blends obtained at temperatures ranging 
from fa) 1.000° C to 1.300° C and (b) from 1.400° C and above. At 1,400° C, HfW2 phase 
formation is visible, see HfW2(311) plane. 



of HfW2 phase was increased with increasing temperature and increasing exposure time. The total amount 

of HfW2 phase was determined to be less than 3 volume-percent even at a temperature of 1,500° C with 

an exposure time of 480 min. This indicates that HfW2 phase formation will be sluggish near or below 

1,300° C. 

The CuHf2 phase has a body-centered tetragonal structure with lattice constants of a = 3.1695 and 

c = 11.1333 (Subramanian and Laughlin 1988; International Centre for Diffraction Data 1994). Hafnium 

has a hexagonal structure with lattice constants of a = 3.1967 and c = 5.0578 (International Centre for 

Diffraction Data 1994). Hafnium oxide (Hf02) has two known monoclinic- and tetragonal-unit cell 

structures (International Centre for Diffraction Data 1994). Because of the similarities in the unit cell 

structures and resulting interfering peaks from hafnium and Hf02 phases, qualitative phase analysis of 

CuHf2 was difficult. There appeared to be, however, some trace amount of CuHf2 phase (<3 volume- 

percent) from FC and FFC specimens. For the NQ specimen, however, the amount of Hf02 phase 

increased significantly while diminishing the CuHf2 phase, indicating selective consumption of available 

hafnium prior to formation of the CuHf2 phase. For the WQ specimen, severe peak broadening was 

observed due to the lattice strain resulting from rapid cooling. It was also possible to have a 

nonstoichiometric compound. This deviation may cause a shifting of the interplanar spacing. This 

possibility made the quantitative phase analysis of CuHf2 almost impossible. Although precise phase 

analysis was not possible, the amount of CuHf2 phase seemed to be negligible enough in the W-Hf-Cu 

alloy system to proceed. 

Figures 3(a) and 3(b) show secondary electron photomicrographs of the binary Hf-Cu alloy obtained 

from two of the four different cooling conditions. Scanning electron microscopy (SEM) analysis of the 

Hf-Cu alloy revealed a duplex composite structure of nearly pure Hf grains embedded in a Hf-Cu matrix. 

The microstructure was determined to be insensitive to the cooling conditions. The volume fraction of 

the Hf-Cu phase as seen in the SEM photomicrographs (Figure 3) was much more than the amount 

determined by the XRD analysis. The maximum solubility of copper in hafnium is only -0.3 weight- 

percent at 1,540° C and is decreased with decreasing temperature (Spencer et al. 1981; Subramanian and 

Laughlin 1988). At 1,310° C, therefore, solubility of copper in hafnium will be negligible. If, and only 

if, a nonstoichiometric Hf-Cu compound had formed, then hafnium-phase diffraction peaks will remain 

at the same 28 location as pure hafnium peaks while shifting the Hf-Cu matrix-phase peaks in either 

direction. It is, therefore, possible to see complete overlapping diffracted peaks from hafnium and Hf-Cu 
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Figure 3. SEIs of the LPS binary 90Hf-10Cu weight-percent alloys obtained from the (a) FC and (b) WO 
conditions. 

matrix phases. On the other hand, zirconium always coexists with hafnium in nature. The hafnium 

powder utilized in the present study contains about 2.5 weight-percent zirconium according to the vendor 

(Teledyne Wah Chang Albany 1994). This residual zirconium may act as a third alloying element to form 

an unknown Hf-Cu-Zr compound. At the present time, however, the chemical and microstructural features 

of the Hf-Cu matrix phase have not been identified completely. 

Two ternary W-Hf-Cu alloys (80W-17.7Hf-Cu and 80W-13.7Hf-Cu) were selected for LPS based on 

the information obtained from the two binary Hf-W and Hf-Cu systems. For the 80W-17.7Hf-Cu alloy, 

the LPS temperature was found to be 1,310° C, which was about 15° C above the liquidus temperature 

for the hafnium-rich side of the Hf-Cu binary eutectic composition (Spencer 1981; Subramanian and 

Laughlin 1988). Table 1 summarizes the data for cooling conditions, exposure time, and phases identified 

by XRD analysis. Surprisingly, HfW2 intermetallic was identified in all cases, while the CuHf2 phase was 

not detected by XRD. An additional attempt to increase the cooling rate was made in order to avoid 

formation of the HfW2 phase by using liquid nitrogen as a quench media. However, the HfW2 phase was 

still present in the LNQ specimen. 

At the present time, only alloys 3-D to 3-G have been examined by SEM and energy dispersive x-ray 

spectroscopy (EDXS).   Thus far, there has been no indication of the presence of the CuHf2 phase. 



Table 1. 80W-17.7Hf-Cu Alloy 

Alloy ID LPS Temp 
(°Q 

Time 
(min) 

Cooling Sintered Phases by XRD 

3-A 1,310 30 FC Yes W+HfW2 

3-B 1,310 30 FFC Yes W+HfW2 

3-C 1,310 30 NQ Yes W+HfW2 

3-D 1,310 30 WQ Yes W+HfW2 

3-E 1,310 60 WQ Yes W+HfW2 

3-F 1,310 5 WQ Yes W+HfW2 

3-G 1,310 5 LNQ Yes W+HfW2 

Note: All specimens had a minor Hf02 phase. 

Microstructures of the rapidly cooled specimens did not result in the duplex composite structure of 

classical WHAs typically characterized by well-defined tungsten grains. Instead, semicontinuous networks 

of tungsten grains dispersed in a HfW2 matrix phase were seen. According to the limited EDSX analysis, 

copper was not detected at or near the HfW2 phase. The occasional appearance of copper was always 

accompanied by the tungsten phase. Therefore, it is speculated that dispersed copper may act as a 

heterogeneous nucleation site for HfW2 intermetaUic formation rather than reacting with tungsten and 

hafnium to form a W-Hf-Cu compound. The microstructure was insensitive to the exposure time as seen 

in Figures 4(a) and 4(b), which show backscattered electron images (BEIs) of alloys 3-E and 3-G, 

respectively. LNQ specimens showed excess quench cracks resulting from the rapid cooling. EDSX 

analysis of the cracked area indicates that in every case pure tungsten phase is responsible for the cracking. 

Oxygen was also detected from the cracked area. 

For 80W-13.7Hf-Cu alloys, an initial LPS temperature of 995° C was selected. After an exposure 

time of 30 min, full sintering was not possible. Therefore, two additional sintering temperatures of 

1,025° C and 1,100° C were applied. Full sintering was obtained at 1,100° C. Table 2 summarizes the 

results obtained from the LPS experimentation. It appears that the formation of a liquid phase is initiated 

by the melting of Cu followed by the formation of the liquid Hf-Cu phase. Therefore, at LPS 

temperatures above the melting temperature of copper (1,083° C), liquid-phase formation would be 

accelerated, which in turn results in decreasing sintering time. Figure 5, BEI of the alloy 3-K which was 

WQ from 995° C, shows such a trend. The nearly pure copper phase with a trace of tungsten (identified 



Table 2.  80W-13.7Hf-Cu Alloy 

Alloy ID LPS Temp 
(°Q 

Time 
(min) 

Cooling Sintered Phases by XRD 

3-H 995 30 FC Noa W+HfW2+Cu 

3-1 995 30 FFC Noa W+HfW2+Cu 

3-J 995 30 NQ Noa W+HfW2+Cu 

3-K 995 30 WQ Noa W+HfW2+Cu 

3-M 1,025 30 NQ Noa W+HfW2+Cu 

3-N 1,025 30 WQ No* W+HfW2+Cu 

3-0 1,100 30 FC Yes W+HfW2 

3-P 1,100 30 FFC Yes W+HfW2 

3-Q 1,100 30 NQ Yes W+HfW2 

3-R 1,100 30 WQ Yes W+HfW2 

All specimens had a minor Hf02 phase. 
Partially sintered. 

' v-      - .„'.- r"-Hf-Ri(A(W+Hi)i<*" 

■v? 
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Figure 4. BEIs of the LPS 80W-17.7Hf-2.3Hf (weight-percent) alloys at 1,310° C obtained from an 
exposure time of (a) 60 min followed by a WQ and (b) 5 min followed by an LNQ. 
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as Cu+W in Figure 5) is surrounded by the tungsten-matrix phase. The mixture of W-Hf-Cu phase(s) 

(identified as W+Hf+Cu in Figure 5) is also surrounded by the tungsten-rich W-Cu phase (gray portion 

of die area identified as W+Cu) and the copper-rich W-Cu phase (white portion of the area identified as 

W+Cu). The copper phase was identified by XRD analysis in all partially sintered specimens. For fully 

sintered specimens, however, the copper phase was not detected by XRD analysis. It is not clear if the 

CuHf2 phase is present in the W-Hf-Cu alloy system. 

Thus far, SEM and EDSX analyses have been completed only for alloys 3-H, 3-K, 3-0, and 3-P. As 

evidenced in Figure 5, substantial microcracks resulted from the water quench. According to the EDSX 

analysis, mainly W and residual copper and oxygen were present in the cracked area. Specimen 3-0 

showed occasional microcracking, while specimen 3-P, which cooled much faster, showed none. Figure 6 

shows BEI of the alloy 3-0 illustrating microcracked areas consisting of mainly pure tungsten phase with 

a trace of copper, Hf-Cu phase, and a HfW2 matrix phase with a trace of copper. It is not clear whether 

excess oxidation of the tungsten phase was responsible for such microcracking. It is also possible that 

liquid copper surrounding the tungsten grains reacts with oxygen and forms a spinel-type compound at 

the grain boundaries. There was no evidence of cracking at or near the grain boundaries between the 

tungsten and HfW2 phases, or within the HfW2 phase. 

"3"Wi 

If 

■■■. 20^m 

iff.- :/;P#'^».£S 
K'.'iir 

120um 

Figure 5. BEI of the LPS 80W-13.7Hf-6.3Cu 
(weight-percent) alloy 3-K shows 
partially sintered W-Hf phase. 

Figure 6. BEI of the LPS 80W-13.7Hf-6.3Cu 
(weight-percent) alloy 3-0 cooled in a 
furnace shows microcracks. 
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4.  CONCLUSIONS 

The following preliminary conclusions were made based on the initial investigation of two W-Hf-Cu 

alloy systems. 

• 80W-17.7Hf-Cu and 80W-13.7Hf-Cu alloys were LPS at temperatures of 1,310° C and 1,100° C, 

respectively. 

• The threshold temperature of the HfW2 phase formation in 90W-Hf binary system was about 

1,400° C. 

• HfW2 phase was detected in the ternary W-Hf-Cu LPS alloy at temperatures as low as 995° C. 

• Cu additions seem to accelerate and stabilize the HfW2 phase formation. 

• CuHf2 phase was not suppressed by a rapid quench from 1,310° C in the 90Hf-10Cu binary system. 

• Formation of the HfW2 phase in the ternary system was insensitive to the cooling rates examined. 

• A duplex composite microstructure of the classical WHAs was not observed in the rapidly cooled 

ternary LPS alloys. Instead, a semicontinuous network of tungsten grains in an HfW2 matrix phase 

was obtained. 

• Trace Cu was observed in the presence of W, and also with the W and Hf in the low and high Cu- 

content alloys, respectively. No evidence of the CuHf2 phase, however, was found. 

The authors would like to emphasize that these conclusions are still preliminary and based on the 

limited data obtained at the present time. 
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